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Purpose. To evaluate the capability of swept source-optical coherence tomography angiography (SS-OCTA) in the detection and
localization of treatment-naive macular neovascularization (MNV) secondary to exudative neovascular age-related macular
degeneration (nAMD). Methods. In this prospective, observational case series, 158 eyes of 142 patients were diagnosed with
exudative nAMD using fluorescein (FA) and indocyanine green angiography (ICGA) and evaluated by SS-OCTA in a tertiary
retina center (Rudolf Foundation Hospital Vienna, Austria). The main outcome measure was the sensitivity of SS-OCTA
compared to the standard multimodal imaging approach. Secondary outcome measure was the anatomic analysis of MNV in
relation to the retinal pigment epithelium. Results. En-face SS-OCTA confirmed a MNV in 126 eyes (sensitivity: 79.8%), leaving 32
eyes (20.2%) undetected. In 23 of these 32 eyes (71.9%), abnormal flow in cross-sectional SS-OCTA B-scans was identified, giving
an overall SS-OCTA sensitivity of 94.3%. Eyes with a pigment epithelium detachment (PED) > 300 #m had a smaller probability
for correct MNV detection (p = 0.015). Type 1 MNV showed a trend (p = 0.051) towards smaller probability for the correct
detection compared to all other subtypes. Other relevant factors for the nondetection of MNV in SS-OCTA were image artifacts
present in 3 of 32 eyes (9.4%). SS-OCTA confirmed the anatomic localization of 93 in 126 MNV's as compared to FA (sensitivity:
73.8%). There was no influence of age, gender, pseudophakia, visual acuity, central foveal thickness, or subfoveal choroidal
thickness on the detection rate of MNV. Conclusions. SS-OCTA remains inferior to dye-based angiography in the detection rate of
exudative nAMD consistent with type 1 MNV and a PED >300 ym. The capability to combine imaging modalities and distinguish
the respective MNV subtype improves its diagnostic value.

1. Introduction

Dilated fundus examination and multimodal imaging in-
cluding optical coherence tomography (OCT), fluorescein
angiography (FA), and indocyanine green angiography
(ICGA) are currently utilized to diagnose neovascular age-
related macular degeneration (nAMD) [1-3]. Type 1 mac-
ular neovascularization (MNV) and polypoidal type 1 MNV

remain under the retinal pigment epithelium (RPE), whereas
type 2 MNV is located in the subretinal space [4, 5]. A mixed
type MNV is composed of new vessels growing in more than
one layer. Both, type 1 and type 2 MNV originate from the
choroid, while type 3, formerly described as retinal angio-
matous proliferation, reflects a distinct form of nAMD with
intraretinal neovascularization and possible involvement of
the choroid [6, 7]. MNV was proposed as a more suitable
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term to sum up all types of nAMD in contrast to choroidal
neovascularization (CNV) [8, 9].

OCT angiography (OCTA) has emerged as a fast and
noninvasive imaging technique to evaluate retinal pathol-
ogies [10, 11]. OCTA’s dye-less visualization of retinal
vasculature is based on changes in intensity or phase con-
trast between multiple repeated OCT B-scans, caused by
moving blood cells [12, 13]. The recent implementation of
OCTA in clinical routine enabled new possibilities for the
detection, analyzation, and observation of MNV in AMD
[14-16]. At the moment, commercially available for a few
years, swept source-OCTA (SS-OCTA) is the most prom-
ising OCTA technology with a longer wavelength and
greater signal-to-noise ratio at greater imaging depths,
resulting in deeper tissue penetration, better visualization of
microvascular structures, and higher diagnostic accuracy
compared to spectral domain-OCTA (SD-OCTA) [17-21].
The comparison of MNV area size in different imaging
techniques including ICGA, SD-OCTA, and SS-OCTA re-
mains challenging, although SS-OCTA tends to correlate
better with ICGA in most recent studies [22-24]. Our study
group retrospectively investigated the detection rate of
nAMD using SS-OCTA, giving a sensitivity of 75.7% in 107
eyes (98 patients) [25]. As a consequence, the aim of this
study was a verification of our data in a prospective manner.
Again, dye-based angiography was used for detecting and
subtyping nAMD as standard of care as opposed to an
analysis solely based on SS-OCTA in a representative
number of eyes. Additionally, MNV subtypes were classified
by means of SS-OCTA.

2. Methods

A prospective masked noninferiority study design to
compare the standard multimodal imaging approach to SS-
OCTA alone in a clinical setting. The study was approved by
the Viennese ethics committee (EK-17-083-0517) and per-
formed in accordance with the tenets of the Declaration of
Helsinki.

2.1. Study Population. This observational case series in-
cluded consecutive patients with the clinical picture of ex-
udative nAMD, referred to our tertiary center (Medical
Retina Unit, Department of Ophthalmology, Rudolf
Foundation Hospital Vienna, Austria; Karl Landsteiner
Institute for Retinal Research and Imaging) for the detection
and classification of MNV between August 2017 and January
2019. All patients routinely underwent a complete oph-
thalmic examination including indirect slit-lamp bio-
microscopy (Haag-Streit AG, Bern, Switzerland) with
dilated pupils using 0.5% tropicamide (Mydriaticum®,
Agepha Pharmaceuticals, Vienna, Austria) and multimodal
imaging with spectral domain- (SD-) OCT, FA, and ICGA
(SPECTRALIS HRA-OCT Confocal Scanning Laser Oph-
thalmoscope and Angiography; Heidelberg Engineering,
Heidelberg, Germany) as baseline standard of care. Best
corrected visual acuity (BCVA) was measured using the
Early Treatment Diabetic Retinopathy Study (ETDRS) letter
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score (4m) and converted to Snellen (Sn). Exclusion criteria
were previous invasive ocular treatment for nAMD at any
time.

2.2. Swept Source Optical Coherence Tomography Angiogra-
phy Protocol. All investigated patients were additionally
examined by a SS-OCTA device (DRI OCT Triton Plus;
Topcon Corporation, Tokyo, Japan) on the same day of the
first consultation. This device works at a center wavelength
of 1050 nm under acquisition of 100,000 A-scans per second
with a motion contrast algorithm called OCTARA™ [26].
Two trained operators captured 4.5 x 4.5 mm, 6 x 6mm and
9x9mm OCTA macular cubes with a scan resolution of
320x 320 (4.5x4.5mm) or 512x512 (6x6mm and
9x9mm) SS-OCT B-line scans for each eye. The device
operates on 1 mW input power with a digital axial resolution
of 2.6 ym and a transverse digital resolution range from 9.4
to 18.8 yum depending on the selected cube.

2.3. Image Grading. The diagnosis of AMD including the
classification of MNV into types 1-3, mixed types 1 and 2, or
polypoidal type 1 was evaluated by two medical retina ex-
perts based on the multimodal imaging approach. Two
independent graders, who were masked to angiographic
findings, utilized all available en-face SS-OCTA images for
grading in a binary manner (0=MNV absent, 1=MNV
present). The integrated OCTA-analysis software IMAGE-
net 6 (Version 1.24.1.15742, Topcon Corporation, Tokyo,
Japan) was used to alter the corresponding automated OCT
segmentation lines in the choriocapillaris or outer retina slab
according to the MNV position. In the case of MNV
presence in en-face SS-OCTA, the localization was deter-
mined in relation to the RPE (0=MNYV under the RPE,
1=MNV above the RPE, 2=MNYV under and above the
RPE, and 3 =MNYV position not attributable). The maximum
height of PED was measured in SS-OCT B-scans as the
distance between Bruch’s membrane and the maximum of
the outer border of the RPE detachment. The central foveal
thickness (CFT) was measured between Bruch’s membrane
and the umbo of the fovea. Subfoveal choroidal thickness
(SFCT) was defined as the greatest vertical distance between
Bruch’s membrane and the sclerochoroidal interface. In case
of severe segmentation artifacts, resegmentation was per-
formed either semiautomated by altering the predefined
sections or by drawing the lines manually. The automated
artifact removal tool was used optionally; however, no
turther image postprocessing was performed for quality
enhancement. Color-coded cross-sectional ~SS-OCTA
B-scans were analyzed for abnormal flow in eyes with MNV
absence in en-face picture. In the case of PED presence,
cross-sectional SS-OCTA B-scans were used to display the
corresponding en-face SS-OCTA segmentation as suggested
by Tan et al. [27]. All eyes with MNV absence in en-face SS-
OCTA were evaluated for relevant image artifacts possibly
obscuring the MNV visualization. In case of grading dis-
agreement, the images were independently re-evaluated. A
senior clinical advisor was consulted if disagreement
persisted.
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2.4. Statistics. Sensitivity of SS-OCTA was calculated for
neovascular AMD as defined by FA and ICGA. Age, gender,
pseudophakia, BCVA, CFT, SECT, PED, and MNYV subtypes
were investigated as potential factors influencing the de-
tection rate using generalized mixed effects models with
random factor patient. To investigate the predictive ability of
PED, ROC-curves and the Youden index were applied to
determine a possible cut-off value. p values smaller than 0.05
were considered as statistically significant. Intergrader
variability was calculated using Cohen’s kappa coeflicients
and corresponding confidence intervals. All analyses were
performed using R, release 3.3.3, and SAS 9.4. system (SAS
Institute Incorporated, Cary, USA). Tables were illustrated
by using Microsoft Excel 2019 (Microsoft Corporation,
Redmond, USA). Figures were composed utilizing Photo-
shop CC 14.0 (Adobe Systems Incorporated, San Jose, USA).

3. Results

Overall, slit-lamp biomicroscopy combined with SD-OCT,
FA, and ICGA led to the diagnosis of treatment-naive ex-
udative nAMD in 158 eyes of 142 patients. The demo-
graphics of the patients are displayed in Table 1.

En-face SS-OCTA was able to depict a MNV formation
in 126 eyes (Sensitivity: 79.8%), while no MNV could be
detected in 32 eyes (20.2%) (Table 2; Figure 1).

In 23 of these 32 eyes (71.9%), cross-sectional SS-OCTA
B-scans revealed abnormal flow patterns in the respective
segmentations (Figure 2).

The combination of en-face and cross-sectional OCTA
confirmed a MNV in 149 of 158 eyes (sensitivity: 94.3%).
Good intergrader agreement was observed initially (K= 0.91,
CI=0.87-0.96), increasing after independent reevaluation of
the questionable findings (K=0.98, CI=0.95-1). The to-
pographic localization defined by SS-OCTA was consistent
with multimodal imaging in 93 of 126 eyes (sensitivity:
73.8%) (Table 3).

Intergrader agreement was lower for the topographical
analysis of MNV formations regardless of the re-evaluation
process (K=0.76, CI=0.65-0.87; K=0.88, CI=0.79-0.96).

Type 1 MNV showed a trend (p =0.051) towards
smaller probability for the correct detection compared to all
other subtypes. To investigate the predictive ability of MNV
in a PED, we further plotted the receiver operating char-
acteristic (ROC) curve. Overall, PED height showed a poor
predictive ability for the detection of MNV with an area
under the curve (AUC) of 0.515. Eyes with a PED >300 ym
had a smaller probability for the correct detection of a MNV
(p = 0.015). However, the best observed cut-off was deter-
mined at 279 ym. There was no influence of age, gender,
pseudophakia, BCVA, CFT, or SFCT on the detection rate of
MNV. Image artifacts potentially obscuring MNV visuali-
zation were observed in 3 of 32 eyes (9.4%) with no MNV
detection: 1 (3.1%) masking and motion artifact, 1 (3.1%)
masking artifact alone, another motion, and blink artifact
(3.1%). Image artifacts were considered as irrelevant in 12 of
32 eyes (37.5%) without MNV detection in en-face SS-
OCTA, while no image artifacts were identified in 17 of 32
eyes (53.1%).

3
TaBLE 1: Demographics of patients enrolled in this study.

Mean age, years (SD) 75 (8.9)
Male, numbers (%) 52 (36.6%)
Female, numbers (%) 90 (63.4%)
BCVA in ETDRS letters, mean (range) 70 (2-95)
Snellen equivalent (range) 20/40 (1/100-20/12)
SD =standard  deviation; BCVA=best corrected visual acuity;

ETDRS = early treatment diabetic retinopathy study.

TasLE 2: The diagnostic sensitivity of SS-OCTA compared to MNV
subtypes as classified by dye-based angiography.

Dye-based angiography SS-OCTA
Cross-
En-face Overall
Subtypes sectional
(%) s (%)
Total n (%) 158 (100) 126 (79.8) 23 (14.5) 149 (94.3)
Type 1 MNV 103 (65.2) 77 (747) 18 (17.5) 95 (92.2)
Type 2 MNV 7 (44) 7 (100) 0 7 (100)
Type 3 MNV 16 (10.1) 15 (93.8) 1 (6.2) 16 (100)
Mixed type 1
ond 2 My 17(08) 15(882)  2(118) 17 (100)
Polypoidal
type 1 MNV 15 (9.5) 12 (80) 2 (13.3) 14 (93.3)

SS-OCTA =swept source-optical coherence tomography angiography;
AMD = age-related macular degeneration; MNV = macular
neovascularization.

4. Discussion

In this prospective study, we investigated the capability of
the noninvasive SS-OCTA technique for the detection and
localization of treatment-naive exudative nAMD in a rep-
resentative number of 158 eyes. An en-face SS-OCTA
sensitivity of 79.8% as opposed to dye-based angiography
could be identified similar to the retrospective data pub-
lished previously (75.7%) [25]. Cross-sectional SS-OCTA
revealed abnormal flow in another 23 of 32 eyes (71.9%)
without MNV illustration in en-face SS-OCTA (Figure 1
B3). The superiority of combining en-face SD-OCTA and
cross-sectional SD-OCTA as opposed to en-face SD-OCTA
alone in patients with nAMD or PCV has been reported
previously [28-30]. Thus, the overall sensitivity of the MNV
detection rate in SS-OCTA increased to 94.3% as compared
to dye-based angiography.

A meta-analysis including 16 eligible studies with 447
CNV eyes and 414 non-CNV eyes recently indicated a
comparable diagnostic value of OCTA independently of the
underlying disease (87% sensitivity) [15]. A Korean study
group investigated patients with exudative nAMD in SS-
OCTA and published an overall sensitivity of 80.7% [31].
Furthermore, they found a comparable sensitivity of 73.5%
for type 1 MNV, 100% for type 2 MNV, and 88.9% for type 3
MNYV, respectively. Corvi et al. evaluated the ability of SS-
OCTA to detect MNV in eyes with atrophy compared to FA,
ICGA, or OCT by utilizing a different study design [32]. A
multimodal imaging setting including SS-OCTA was used to
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FIGURE 1: Detection of macular neovascularization (MNV) in age-related macular degeneration (AMD) by fluorescein angiography (FA),
indocyanine green angiography (ICGA), and 4.5 x 4.5 mm en-face swept source; optical coherence tomography angiography (SS-OCTA).
(A1) Type 1 MNV with speckled hyperfluorescence in FA (A2) ICGA visualized the neovascular lesion (arrow). (A3) Evidence of MNV
(arrow) in en-face SS-OCTA with choriocapillaris (CC) segmentation under the retinal pigment epithelium (RPE) but (A4) absence of flow
in the outer retina (OR) slab. (B1) Leakage in FA consistent with a type 2 MNV (arrow) in a left eye. (B2) Early ICGA highlighted a well
demarcated MNV (arrow). (B3) Automated en-face SS-OCTA CC scan with a dense MNV (arrow) surrounded by a dark halo and
projection artifacts of the superficial retinal vessels. (B4) Automated en-face SS-OCTA OR segmentation with the same neovascular complex
in an otherwise nonvascularized tissue. (C1) A hyperfluorescent spot (arrow) in early FA and (C2) late ICGA diagnosed as type 3 MNV. (C3)
Evidence of a neovascularization in the en-face SS-OCTA with CC and (C4) OR segmentation. (D1) Mixed type MNV with early leakage
surrounded by speckled hyperfluorescence in FA (D2) ICGA with a neovascular lesion. (D3) MNV presence (circle) under the RPE in the
en-face SS-OCTA CC slab and (D4) clear evidence of MNV over the RPE in the OR segmentation.
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FI1GURE 2: Detection of macular neovascularization (MNV) in age-related macular degeneration (AMD) by fluorescein angiography (FA),
indocyanine green angiography (ICGA), and cross-sectional swept source-optical coherence tomography angiography (SS-OCTA). (A1)
Early FA with drusen staining and a focal speckled hyperfluorescence (arrow) representing type 1 MNV in a left eye. (A2) Early ICGA with a
circumscribed neovascular lesion (arrow) at the same location as shown in FA. (A3) Manual segmentation of a 4.5 x 4.5 mm en-face OCTA
CC slab without evidence of a MNV membrane below the retinal pigment epithelium (RPE) besides projection artifacts and signal loss but
flow density in color coded cross-sectional SS-OCTA. (A4) Manual segmentation of a 4.5 x 4.5 mm en-face OCTA CC slab across the fovea
and cross-sectional SS-OCTA with no flow suspicious of a neovascularization in an otherwise dome-shaped pigment epithelium de-
tachment. (B1) Ill-defined hyperfluorescence and drusen staining in early FA. (B2) ICGA revealed a hypercyanescent nodule consistent with
a polypoidal lesion corresponding to (B3) cross-sectional flow density in SS-OCTA CC slab through the point of interest. (B4) 9 x 9 mm en-
face OCTA OR slab at the fovea with hollow cystoid spaces besides projection artifacts but no evidence of neovascularization.
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TaBLE 3: Topography in SS-OCTA compared to MNV subtypes as classified by dye-based angiography.

Dye-based angiography SS-OCTA

Subtypes Under the RPE (%) Above the RPE (%) Under and above the RPE (%) Position unclear (%)
Total n (%) 78 (61.9) 7 (5.5.) 35 (27.8) 6 (4.8)

Type 1 MNV 61 (79.2) 1(1.3) 14 (18.2) 1(1.3)

Type 2 MNV 0 0 5 (71.4) 2 (28.6)

Type 3 MNV 1 (6.7) 6 (40) 8 (53.3) 0

Mixed type 1 and 2 MNV 5 (33.3) 0 7 (46.7) 3 (20)
Polypoidal type 1 MNV 11 (91.7) 0 1(8.3) 0

MNYV =macular neovascularization; SS-OCTA = swept source-optical coherence tomography angiography; RPE =retinal pigment epithelium.

create an absolute, to which each individual imaging mo-
dality was compared. OCTA appeared to be superior to the
other imaging modalities (95.2% sensitivity) in case of a
coexistent macular atrophy. The study group suggested to
consider OCTA as part of the multimodal imaging evalu-
ation in eyes with atrophy. In this study, all eyes compro-
mised by MNV were included for further comparison,
regardless of the presence of atrophy. The herein presented
analyzation of MNV subtypes showed excellent sensitivity
for all but type 1 MNV, which represents the largest sub-
cohort in nAMD, with a detection failure of 25.3% in en-face
SS-OCTA. The detection of type 1 MNV below the RPE
remains a diagnostic challenge when it comes to motion
contrast sensitivity. The insufficient recognition of smaller
immature pathologic vessels in the highly vascularized
choriocapillaris contribute to the negative selection in
OCTA. Another argument is the possible signal loss in a
higher PED, a subtype of type 1 MNV also referred to as
vascularized or fibrovascular PED [33, 34]. For this purpose,
we analyzed the detection rate in connection with the PED
height (Figure 1(b)). In general, the maximum PED height
seemed to be a poor predictive marker in ROC curve
influencing MNV  detection by en-face SS-OCTA
(AUC=0.515), regardless of the applied segmentation
process. Interestingly, nondetection was most likely in eyes
with a PED above 300um. This data enhances findings
formerly proposed in our retrospective analysis, which
concluded an inferior detection rate in eyes with a
PED > 400 ym [25]. In accordance with our data, Mrejen
et al. [34] tested the sensitivity of SD-OCTA in type 1 MNV
according to the corresponding PED and concluded an
inferior MNV detection rate in eyes with a PED > 250 ym.
The study group suggested the use of manual segmentation
and a multimodal imaging approach in eyes with AMD and
a larger PED. Further evaluation of the 32 eyes without
MNV in en-face SS-OCTA revealed relevant image artifacts
in 3 eyes (9.4%). Masking artifacts due to synchysis scin-
tillans or subretinal hemorrhage, next to motion and blink
artifacts were accountable for the poor image quality in these
eyes. Image artifacts in OCTA are a common phenomenon
in patients with retinal and choroidal pathologies, especially
in nAMD [35, 36].

The anatomical localization of all MNV subtypes
according to the RPE was investigated by SS-OCTA and
compared to FA (Table 1). While most of the eyes with type
1, type 3, or polypoidal type 1 MNV were detected correctly,
mixed types 1 and 2 MNV and particularly type 2 MNV were

identified in different layers by SS-OCTA. In type 2 MNV, 5
out of 7 eyes were detected in the sub-RPE as well as the
subretinal segmentation (Figure 1(a)), while the topography
was unclear in another 2 eyes. No eye revealed a neovascular
network exclusively in the subretinal space as defined by type
2 MNV and as classified by both graders independently. A
possible explanation is the colocalization of matured feeder
vessels with explicit flow signal, which derive from the
choroid through the RPE and conform a neovascular
complex. Another reason might be the reflection of a
subretinal membrane also visible in the choriocapillaris
segmentation as projection artifacts, similar to the frequent
imprint of superficial retinal vessels. To our knowledge, only
one study group focused on the topography of MNV in
nAMD by SS-OCTA, investigating 13 eyes with mixed types
1 and 2 MNV [37]. They were able to distinguish between
type 1 and type 2 MNV components by SS-OCTA. In our
study, 7 eyes (46.7%) were correctly interpreted as mixed
types 1 and 2 MNV by SS-OCTA.

The limitations of this study include its single center
setting without reading center approval. The detection of
nonexudative MNV in the fellow eye was not investigated.
Therefore, no conclusion regarding specificity of SS-OCTA
could be drawn. PED measurement was defined as the
maximum height of PED regardless of its reflectivity pattern.
Despite that, this is the largest prospective case series
comparing the sensitivity of SS-OCTA to dye-based angi-
ography including ICGA in treatment-naive exudative
nAMD. Eyes with image artifacts were analyzed to dem-
onstrate the diagnostic capability of SS-OCTA in consec-
utive patients with treatment-naive nAMD in a clinical
setting. Furthermore, this is the first successful attempt to
bring an anatomical classification solely based on SS-OCTA
into practice.

To conclude, the detection capability of SS-OCTA re-
mains inferior to dye-based angiography in treatment-naive
exudative nAMD. However, the gap narrows with combined
imaging modalities of SS-OCTA. The potential to classify
MNV subtypes based on its localization enhances its diag-
nostic value.
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